Monocyclic Rod-Type Liquid Crystals, 2-(2-Alkenoyloxy)-5-alkoxytropones

Akira MORI,* Ryoji MORI, and Hitoshi TAKESHITA*

Institute of Advanced Material Study, 86, Kyushu University,
Kasuga-koen, Kasuga, Fukuoka 816

In 2-(2-alkenoyloxy)-5-alkoxytropones, showing a monotropic smectic A phase, the introduction of a double bond lowers the melting and clearing points as well as the recrystallization temperatures.

The core part of rod-type thermotropic liquid crystals usually has at least two six-membered rings.¹⁾ A few monosaccharides^{2,3)} and aromatic acid derivatives⁴⁾ form a stable dimer through hydrogen bonding to show mesophase formation. Recently, however, we reported that the monocyclic troponoids, 2-alkanoyloxy-5-alkoxytropones, were monotropically mesogenic and that the characteristic molecular rearrangement, the [1,9] sigmatropy, played an important role to exhibit the mesophase.^{5,6)} In this paper, we report the preparation of monocyclic rod-type liquid crystals with 2-(2-alkenoyloxy)-5-alkoxytropone structure, which was expected to extend the linearity of the molecule by introducing the double bond.

2-(2-Alkenoyloxy)-5-alkoxytropones (1) were prepared in 39-74% yields from 5-alkoxytropolones (2) and alkenoyl chlorides (3). Alkenoic acids were obtained by the Horner-Emmons reaction (K_2CO_3/H_2O , 25 °C, 79-92% yields) of aldehydes and ethyl diethylphosphonoacetate and followed by the hydrolysis (KOH/EtOH-H₂O, 78-95% yields) of ethyl alkenoates.

Phase transition temperatures were determined by a differential scanning calorimeter (DSC). The mesomorphic phases were identified to be a smectic A phase (S_A) on the basis of the microscopic texture.

The phase transition behaviors are summarized in Table 1. The melting and clearing points as well as the recrystallization temperatures of 1 are lower than those of the corresponding 2-alkanoyloxy-5-alkoxytropones (4) with the same side chain length.^{5,6)} Although the thermal stability of 1 decreased, the temperature range

showing the liquid crystalline property increased. In the cases of 1f and 1i, they showed a S_A phase, whereas the corresponding 4f and 4i were nonmesogenic. The double bond seems to extend the linearity and planarity of the molecule to order the molecules. Related studies on monocyclic rod-type liquid crystals are in progress.

Table 1. Phase transition temperatures and enthalpy changes of 1 and 4^{a}

		1 at	ole 1. Phase transition temperati	iics a	110 0	111111	upy changes of 1 and 4
Entry	m	n	Transition temp / °C (ΔH / kJ·mol ⁻¹)	Entry	m	n	Transition temp / °C (ΔH / kJ·mol ⁻¹)
1a	12	7	K 36 Iso	4a	12	9	$ \begin{array}{c c} $
1b	12	9	$K = \frac{47(50.3)}{22(36.8)} S_A = \frac{1}{42(11.8)}$ Iso	4b	12	11	$K \xrightarrow{58} Iso$
1 c	12	11	67	4c	12	13	$K \xrightarrow{63} Iso$
1 d	15	7	$K = \frac{48(54.6)}{-11(16.1)} S_A = 42(12.8)$ Iso	4 d	15	9	$K = \frac{48(64.4)}{24(28.1)} S_A = 47(12.6)$ Iso
1 e	15	9	$K = \frac{54(72.8)}{35(54.5)} S_A = \frac{1}{49(14.6)}$ Iso	4 e	15	11	$K = \frac{60(73.9)}{47} S_A = \frac{52(10.9)}{52(10.9)}$ Iso
1 f	15	11	51 ⁶ 53	4 f	15	13	K = 67(83.7)
1 g	18	7	$K \xrightarrow{56(67.7)} S_A \xrightarrow{43(13.1)} Iso$	4 g	18	9	$K = \frac{53(71.1)}{29(20.3)} S_A = 46(14.9)$ Iso
1h	18	9	$K \xrightarrow{62(83.0)} S_A \xrightarrow{51(17.1)} Iso$	4h	18	11	$K = \frac{60(62.2)}{44(36.5)} S_A = \frac{52(17.0)}{52(17.0)}$ Iso
1 i	18	11	K = 69(88.9) S _A = 56	4i	18	13	K — 72 Iso 61

a) K: crystals, Iso: isotropic liquid, S_A : smectic A phase.

$$C_mH_{2m+1}O$$
 C_nH_{2n+1}

References

- 1) G. W. Gray, "The Molecular Physics of Liquid Crystals," ed by G. R. Luckhurst and G. W. Gray, Academic Press, London and New York (1979), pp. 1-29 and pp. 269-284.
- 2) J. A. Jeffrey, Acc. Chem. Res., 19, 168 (1986).
- 3) J. W. Goodby, Mol. Cryst. Liq. Cryst., 110, 205 (1984).
- 4) G. W. Gray and B. Jones, J. Chem. Soc., 1953, 4179.
- 5) A. Mori, H. Takeshita, K. Kida, and M. Uchida, J. Am. Chem. Soc., 112, 8635 (1990).
- 6) K. Kida, A. Mori, and H. Takeshita, Mol. Cryst. Liq. Cryst., 199, 387 (1991).

(Received July 18, 1991)